Print Friendly, PDF & Email

I fotorecettori della retina sviluppano le loro forme e funzioni specifiche sulla base di istruzioni ricevute al momento della loro generazione da cellule staminali multipotenti. Uno studio condotto dai ricercatori di Università di Pisa e Scuola Superiore Sant’Anna ha tuttavia mostrato che, se durante un limitato intervallo temporale successivo all’iniziale assegnazione del loro destino, non ricevono dall’ambiente segnali specifici di tipo sia fisico che chimico, allora svilupperanno caratteristiche ibride tra fotorecettori e cellule gliali. I risultati dello studio sono stati pubblicati sulla rivista internazionale “Scientific Reports” in un articolo intitolato “Increasing cell culture density during a developmental window prevents fated rod precursors derailment toward hybrid rod-glia cells”, con autori Massimiliano Andreazzoli, Gian Carlo Demontis e Debora Angeloni.

Lo studio era volto a comprendere le ragioni per cui, nei modelli preclinici di terapie sostitutive di malattie degenerative della retina, la maggior parte delle cellule trapiantate non riescono a integrarsi nella retina del ricevente per sostituire efficacemente le cellule degenerate: “Conoscere i meccanismi di plasticità del destino cellulare dei fotorecettori è importante per sviluppare terapie sostitutive per le patologie degenerative della retina – commentano i ricercatori – Le tecnologie delle cellule staminali umane inducibili e dell’editing del DNA permettono di generare precursori dei bastoncelli umani per sostituire le cellule degenerate. Ecco dunque che l’individuazione di segnali necessari ai precursori immaturi dei fotorecettori per mantenere il loro destino dopo l’isolamento dalla retina rappresenta un passo rilevante per migliorare l’efficienza dei trapianti come terapia sostitutiva per le patologie degenerative retiniche”.

Lo studio si colloca nell’ambito di un progetto più ampio coordinato da Vania Broccoli e finanziato dalla Fondazione Roma. È partito nel 2016 ed è nato dall’interesse del professor Andreazzoli verso i meccanismi di genetica molecolare dello sviluppo della retina, del professor Demontis verso la funzionalità elettrofisiologica dei fotorecettori e della professoressa Angeloni verso i meccanismi di meccanotrasduzione cellulare. 

“Abbiamo confrontato il profilo trascrizionale dei precursori dei bastoncelli tra il momento in cui la genesi dei precursori è in larga parte completa e quello in cui avviene l’espressione delle caratteristiche funzionali specifiche di bastoncelli adulti – spiegano i ricercatori – Un aspetto del tutto inatteso di questo studio è stata l’osservazione che i precursori dei bastoncelli esprimono sia i geni pertinenti al loro programma di sviluppo che quelli rilevanti per lo sviluppo di un tipo cellulare gliale, ovvero non neuronale. L’approccio risolutivo è stato quello di misurare l’espressione mediante la tecnica della quantitative real time polymerase chain reaction di geni specifici in singole cellule identificate sia dal punto di vista molecolare che funzionale, e confrontare l’effetto sull’espressione genica di fattori ambientali, quali la densità delle colture cellulari. Abbiamo osservato come l’aumento della densità cellulare sia estremamente efficace nel ridurre l’espressione dei geni importanti per lo sviluppo di caratteristiche gliali e prevenire lo sviluppo di caratteristiche funzionali ibride tra bastoncelli e glia. I segnali associati alla densità cellulare delle colture sono specifici, in quanto l’espressione di geni sensibili al livello di ossigeno nell’ambiente, non viene modificata dalla variazione della densità cellulare delle colture”.

Proiettando i risultati verso future applicazioni, i ricercatori suggeriscono che un interessante sviluppo sia la possibilità di utilizzare microimpalcature per fornire ai precursori trapiantati i segnali meccanici necessari a mantenerne l’identità prevenendo la sviluppo di caratteristiche ibride.